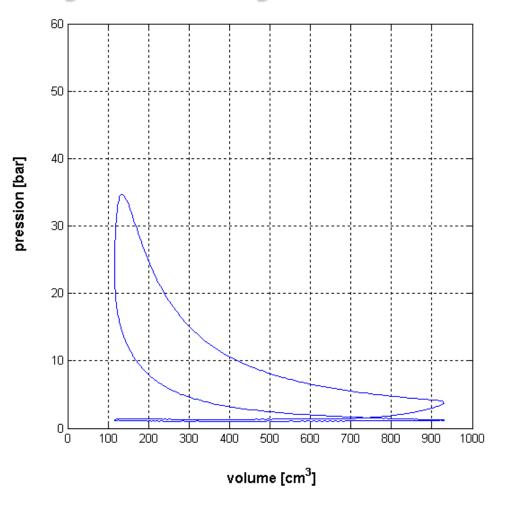


Chapter 2: Thermodynamic cycles



Pressure P

Power = $P \times c$

'indicated' power = indicated by a pressure sensor = crankshaft power before losses (friction, oil/water pumps, other auxiliaries)

Learning objectives in Chapter 2

- ⇒ represent the thermodynamic transformations in P-V and T-s diagrams
- ⇒ know different ideal cycles and their representations
- ⇒ know how a **real** cycle can be <u>measured</u> and what are the differences between an **ideal** and a **real** cycle

Content Chapter 2

Thermodynamic basics

- *P-v* and *T-s* diagrams
- Thermodynamic cycles

Ideal cycles

- 1. Carnot cycle
- 2. Stirling cycle
- 3. Otto cycle
- 4. **Diesel** cycle
- 5. Sabaté "combined" cycle
- 6. "Wrapped" cycle
- 7. Efficiency of ideal cycles

Real cycles

- Measurement method of the thermodynamic cycle on an engine
- Difference between real cycle ⇔ ideal cycle

P-v Diagram (Clapeyron diagram)

- Pressure on the Y axis (bar, (Pa))
- (specific) Volume on the X axis (m³/kg)
- characteristic curves for an IDEAL GAS:
 - isothermal & isenthalpic curves
 - \Rightarrow equilateral hyperbola: Pv = cte
 - isentropic curve (steeper)

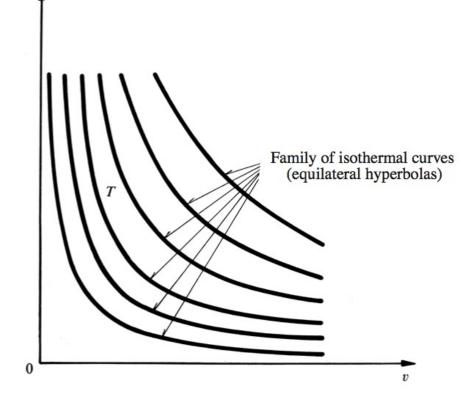
$$\Rightarrow Pv^{\gamma} = cte$$

for a biphasic system: liquid-gas

⇒ saturation curve

$$P \cdot v = r \cdot T \quad with \quad r = \frac{\overline{r}}{\widetilde{m}} = \frac{\Re}{\widetilde{m}}$$

$$r_{air} = \frac{\overline{r}}{\widetilde{m}_{air}} = \frac{8'314}{28.97} = 287 \frac{J}{kgK}$$



Cp, Cv = f(T)

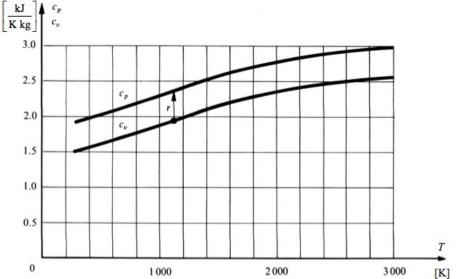
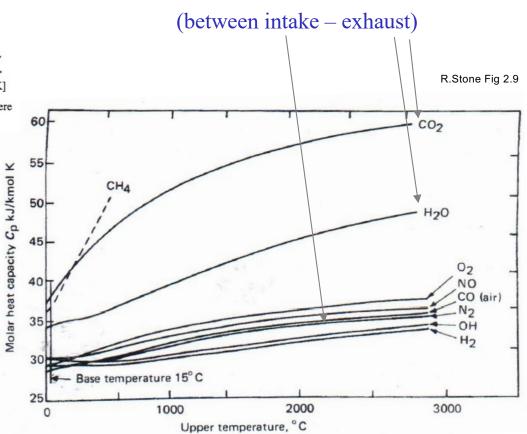


Fig. 5.9 Variation of c_v and c_p as a function of the temperature T for steam, in the extreme case where $P \rightarrow 0$.

Borel/Favrat Fig 5.9

=> Cp, Cv ≠ const!



 $=> \gamma \neq const!$

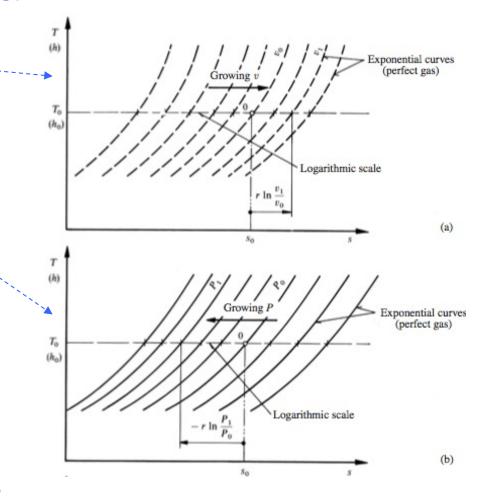
T-s diagram (entropy diagram)

- Temperature on the Y axis (K, C)
- (specific) Entropy on the X axis (J/K/kg)
- characteristic curves for an IDEAL GAS:

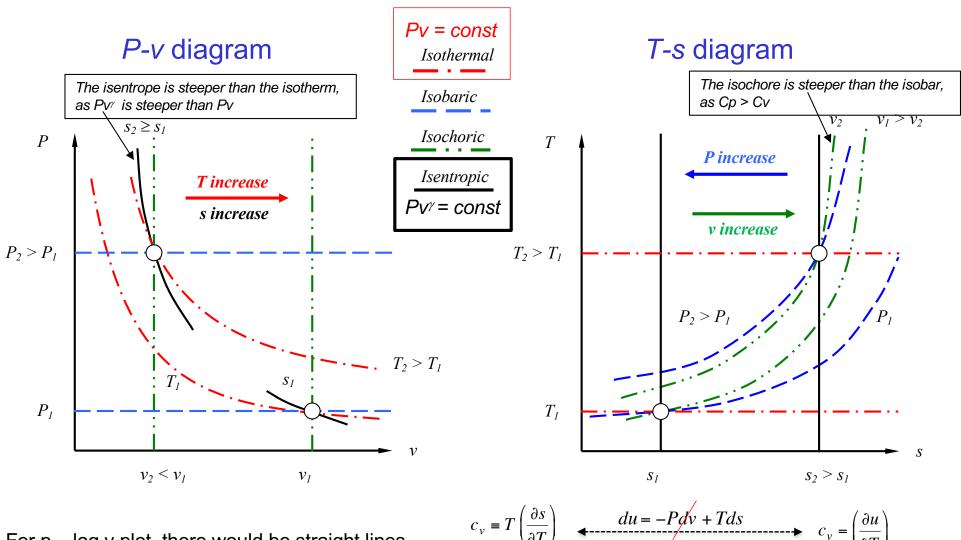
isobaric & isochoric curves
 ⇒ exponential curves with X axis
 as asymptote

for a biphasic system: liquid-gas

⇒ saturation curve



Isocurves in P-v and T-s (ideal gas)



For p - log v plot, there would be straight lines, with slope 1 for pv = const (isothermal), slope = 1.4 for air isentropic transformation

$$c_{v} = T \left(\frac{\partial s}{\partial T} \right)_{v} \qquad du = -P dv + T ds$$

$$c_{v} = \left(\frac{\partial u}{\partial T} \right)_{v}$$

$$c_{p} = T \left(\frac{\partial s}{\partial T} \right)_{P} \qquad dh = v dP + T ds$$

$$c_{p} = \left(\frac{\partial h}{\partial T} \right)_{P}$$

Adiabatic compression (ideal gas)

(1)

$$dU = \delta Q + \delta W$$

$$\delta Q = 0$$

$$du = C_{v}dT = 0 - Pdv$$
(2)

$$Pv = rT$$

$$\Rightarrow d(Pv) = Pdv + vdP = rdT$$

Eliminate dT from (1) and (2):

$$\frac{C_{v}}{r}(Pdv + vdP) = -Pdv$$

$$\frac{C_{v}}{r}vdP = -\left(\frac{C_{v}}{r} + 1\right)Pdv$$

$$\frac{dP}{P} = -\frac{r}{C_{v}} \left(\frac{C_{v} + r}{r} \right) \frac{dv}{v} = -\left(\frac{C_{p}}{C_{v}} \right) \frac{dv}{v} = -\gamma \frac{dv}{v}$$

Ideal gas => U is only kinetic energy => depends only on T.

Work δW done at constant pressure for ideal gas = PdV = rdT.

Hence, adding heat to an ideal gas at constant pressure = adding extra heat rdT for each kg of gas, beyond the heat added at constant volume. Hence the specific heat of an ideal gas at constant pressure is $c_P = c_V + r$

Or, in similar terms:

at <u>constant volume</u>, all the added heat increases the internal energy and thus the temperature; at <u>constant pressure</u>, we need to add to the previous amount an <u>extra amount of heat</u> equal to the work done due to the gas undergoing expansion against atmosphere.

s-P-v-T relations

$$ds = c_p \frac{dv}{v} + c_v \frac{dP}{P}$$

$$ds = r \frac{dv}{v} + c_v \frac{dT}{T}$$

$$ds = c_p \frac{dv}{v} + c_v \frac{dP}{P}$$
 $ds = r \frac{dv}{v} + c_v \frac{dT}{T}$ $ds = -r \frac{dP}{P} + c_p \frac{dT}{T}$

Isentropic process:

$$C_p \frac{dv}{v} = -C_v \frac{dP}{P}$$

$$C_P d \ln v = -C_v d \ln P$$

$$C_P \ln \frac{v_2}{v_1} = -C_v \ln \frac{P_2}{P_1}$$

$$\frac{C_P}{C_v} \ln \frac{v_2}{v_1} = -\ln \frac{P_2}{P_1}$$

$$\ln\left(\frac{v_2}{v_1}\right)^{C_P/C_v} = \ln\frac{P_1}{P_2}$$

$$\left(\frac{v_2}{v_1}\right)^{\gamma} = \frac{P_1}{P_2}$$

$$P_2 v_2^{\gamma} = P_1 v_1^{\gamma} = P v^{\gamma} = const$$

$$C_{p} \frac{dT}{T} = r \frac{dP}{P}$$

$$C_{P} d \ln T = r d \ln P$$

$$C_{P} \ln \frac{T_{2}}{T_{1}} = (C_{P} - C_{v}) \ln \frac{P_{2}}{P_{1}}$$

$$\ln \frac{T_{2}}{T_{1}} = \frac{C_{P} - C_{v}}{C_{P}} \ln \frac{P_{2}}{P_{1}}$$

$$\ln \left(\frac{T_{2}}{T_{1}}\right) = \frac{\gamma - 1}{\gamma} \ln \frac{P_{2}}{P_{1}}$$

$$\ln \left(\frac{T_{2}}{T_{1}}\right) = \ln \left(\frac{P_{2}}{P_{1}}\right)^{\Gamma}$$

$$\left(\frac{T_{2}}{T_{1}}\right) = \left(\frac{P_{2}}{P_{1}}\right)^{\Gamma}$$

$$\frac{P_{2}^{\Gamma}}{T_{2}} = \frac{P_{1}^{\Gamma}}{T_{1}} = \frac{P^{\Gamma}}{T_{s}} = const$$

Consequence

Gas	γ
Air	1.40
Ammonia	1.32
Argon	1.66
Benzene	1.12
n- ou iso-butane	1.18
Iso-butane	1.19
Carbon Dioxide	1.28
Carbon Monoxide	1.40
Ethane	1.18
Ethyl alcohol	1.13
Helium	1.66
n-heptane	1.05
Hexane	1.06
Hydrogen	1.41
Methyl alcohol	1.20
Natural Gas	1.32
(Methane)	4.40
Nitric oxide	1.40
Nitrogen	1.40
Nitrous oxide	1.31
n-octane	1.05
Oxygen	1.40
n- ou Iso-pentane	1.08
Propane	1.13
R-134a	1.20
Steam (water)	1.33
Sulphur dioxide	1.26

Gas	Example	C _P	C _v	γ	Γ
Monoatomic	He, Ar	2.5r	1.5r	1.67	0.4
Diatomic	N ₂ , O ₂ , (air)	3.5r	2.5r	1.41	0.29
Triatomic etc.	H ₂ O, CO ₂ ,	4r	3r	1.33	0.25

Compressing air (**C.I.**) has $\gamma = 1.40$ Compressing air / fuel mixture (**S.I.**) has $\gamma \approx 1.35$

 $C_P - C_v = r$

Hence for a <u>same</u> compression ratio ε , a higher final pressure is reached in a **C.I.** engine:

ε	P ₂	P ₂	η_{l}	η_l	= <u>indicated</u>
for γ equal:	γ=1.40	γ=1.35	γ=1.40	γ=1.35	efficiency
ε = 10	25.1 bar	22.4 bar	60%	55%	$\eta_I = 1 - \frac{1}{\varepsilon^{\gamma}}$
ε = 13	36.3 bar	31.9 bar	64%	59%	

5% points efficiency penalty C.I. \rightarrow S.I. only due to γ

Some property values

Gas (300K)	Chemical Formula	Molar mass	Gas constant	Specific Heat at const. P	Specific Heat at const. V	Specific Heat Ratio	
		m [kg/kmol]	r [kJ/kg.K]	Cp [kJ/kg.K]	Cv [kJ/kg.K]	$\gamma = Cp/Cv$	
Air		28.97	0.287	1.005	0.718	1.4	
Argon	Ar	39.948	0.2081	0.5203	0.3122	1.667	
Butane	C_4H_{10}	58.124	0.1433	1.7164	1.5734	1.091	
Carbon Dioxide	CO_2	44.01	0.1889	0.846	0.657	1.289	
Carbon Monoxide	СО	28.011	0.2968	1.04	0.744	1.4	
Ethane	C_2H_6	30.07	0.2765	1.7662	1.4897	1.186	
Ethylene	C_2H_4	28.054	0.2964	1.5482	1.2518	1.237	
Helium	He	4.003	2.0769	5.1926	3.1156	1.667	
Hydrogen	H_2	2.016	4.124	14.307	10.183	1.405	
Methane	CH ₄	16.043	0.5182	2.2537	1.7354	1.299	
Neon	Ne	20.183	0.4119	1.0299	0.6179	1.667	
Nitrogen	N_2	28.013	0.2968	1.039	0.743	1.4	
Octane	C ₈ H ₁₈	114.231	0.0729	1.7113	1.6385	1.044	
Oxygen	O_2	31.999	0.2598	0.918	0.658	1.395	
Propane	C_3H_8	44.097	0.1885	1.6794	1.4909	1.126	
Steam	H_2O	18.015	0.4615	1.8723	1.4108	1.327	

Content Chapter 2

Thermodynamic basics

- *P-v* and *T-s* diagrams
- Thermodynamic cycles

Ideal cycles

- 1. Carnot cycle
- 2. Stirling cycle
- 3. Otto cycle
- 4. **Diesel** cycle
- 5. Combined cycle
- 6. Wrapped cycle
- 7. Efficiency of ideal cycles

Real cycles

- Measurement method of the thermodynamic cycle on an engine
- Difference between real cycle ⇔ ideal cycle

General assumptions:

- Combustion process ⇒ assimilated to a heat transfer
- Work fluid is not subjected to modification of composition (!)
 - \Rightarrow work fluid = air $\Rightarrow c_p$, c_v = constant (!)

$$\Delta U_{cz} = \sum_{k} \delta E_{k}^{+} + \sum_{i} \delta Q_{i}^{+} + \sum_{j} h_{cz,j} \cdot dM_{j}^{+}$$

Thermal losses supposed to be zero (!)

1st Law:
$$\Delta U_{cz}^{\text{state function}}$$
 $dM = 0$

$$\Rightarrow \sum_{k} E_{k}^{+} + \sum_{i} Q_{i}^{+} = 0$$

$$\delta S^i = \delta S^r = \frac{\delta R}{T}$$

•
$$2^{\text{nd}}$$
 Law: $TdS = \delta Q + \delta R$

• 1st Law:
$$\Delta U_{\text{cz}}^{\text{state function}}$$
, $dM = 0$ $\Rightarrow \sum_{k} E_{k}^{+} + \sum_{i} Q_{i}^{+} = 0$ $\delta S^{i} = \delta S^{r} = \frac{\delta R}{T}$
• 2nd Law: $TdS = \delta Q + \delta R$ $\Rightarrow \oint dS = \oint \frac{\delta Q_{a}^{+}}{T_{a}} + \oint \frac{\delta Q_{b}^{+}}{T_{b}} + ... + \oint \delta S^{i}$

$$\frac{Q_a^+}{T_a} + \frac{Q_b^+}{T_b} + \dots + S^i = 0$$

$$\frac{Q_a^+}{T} + \frac{Q_b^+}{T} + \dots + S^i = 0 \qquad \qquad dS = \underbrace{\delta S^e}_{=0} + \delta S^i \quad and \quad \delta S^i \ge 0$$

 \Rightarrow The condition $E^+ < 0$ (i.e. $E^- > 0$, work generated) requires to have at least 2 thermal sources Q_a and Q_b . Ideality means $S^i = 0$ (no friction, no dissipation, $\delta R=0$)

State function cycle integral = 0 **P-v** cycle integral = work

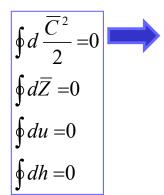
Fundamental equations: Borel / Favrat book, § 13.2.2

$$\oint \delta a^{-} + \oint d \frac{C^{2}}{2} + g \oint d \overline{Z} + \oint \delta r = \oint P dv = -\oint du + \oint \delta q^{+} + \oint \delta r = -\oint du + \oint T ds$$

Open system

$$\oint \delta e^{-} + \oint d\frac{C^{2}}{2} + g \oint dZ + \oint \delta r = -\oint v dP = -\oint dh + \oint \delta q^{+} + \oint \delta r = -\oint dh + \oint T ds$$

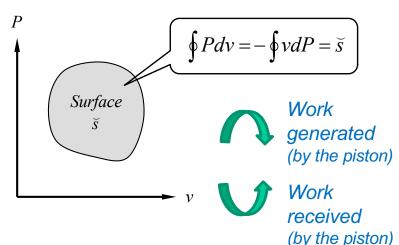
State functions:

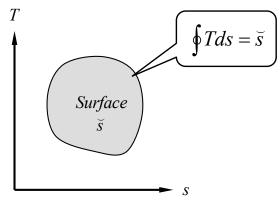


$$a^{-} = q^{+} = \underbrace{\oint Pdv}_{\overline{s}} - r = \underbrace{\oint Tds}_{\overline{s}} - r$$

$$e^{-} = q^{+} = \underbrace{-\oint vdP}_{\bar{s}} - r = \underbrace{\oint Tds}_{\bar{s}} - r$$

r : friction losses





Surface = work done by the ideal cycle (no friction loss). <u>Indicated</u> work

Thermodynamic cycles

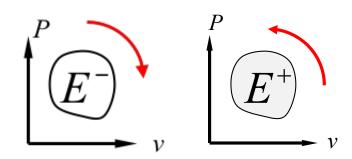
• always <u>bi-thermal</u>:

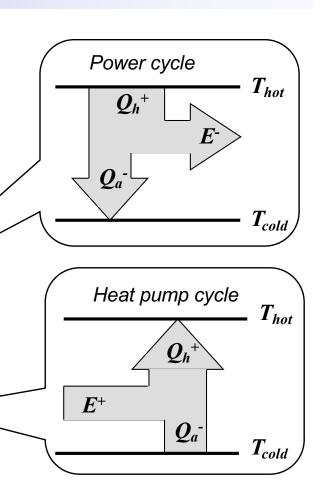
Heat transfer with 2 thermal sources

If $Q^+ > 0$ and $E^+ < 0 \Rightarrow$ **Power cycles** example: Internal Combustion engines

External Combustion engines (gas turbines)

If $E^+ > 0$ and $Q^+ < 0 \Rightarrow$ (Heat) pump cycles example: Heat pump and refrigeration cycles





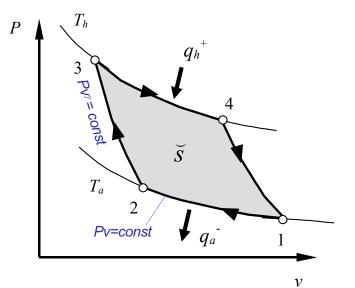
1. Carnot cycle

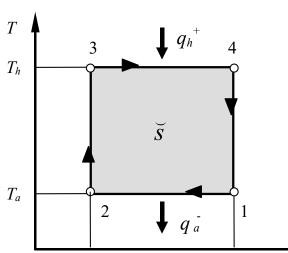
 $\delta q = Tds - \delta r \quad \to \quad \delta q = Tds$

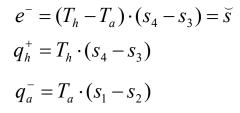
 \Rightarrow bi-thermal reversible power cycle ($\Rightarrow \delta r = 0$)

 $e^{-} = \oint Tds - \mathop{\mathcal{L}}_{\widetilde{s}} = 0$

 \Rightarrow 2 isothermal + 2 adiabatic (isentropic ($\delta r = 0$)) processes







$$\varepsilon^* = \eta_I^* = \Theta = 1 - \frac{T_a}{T_h}$$

$$\eta^* = 1$$

I: « indicated » (=thdyn cycle eff.)

Description

1-2 : isothermal compression: $Q^+ < 0$; $E^+ > 0$

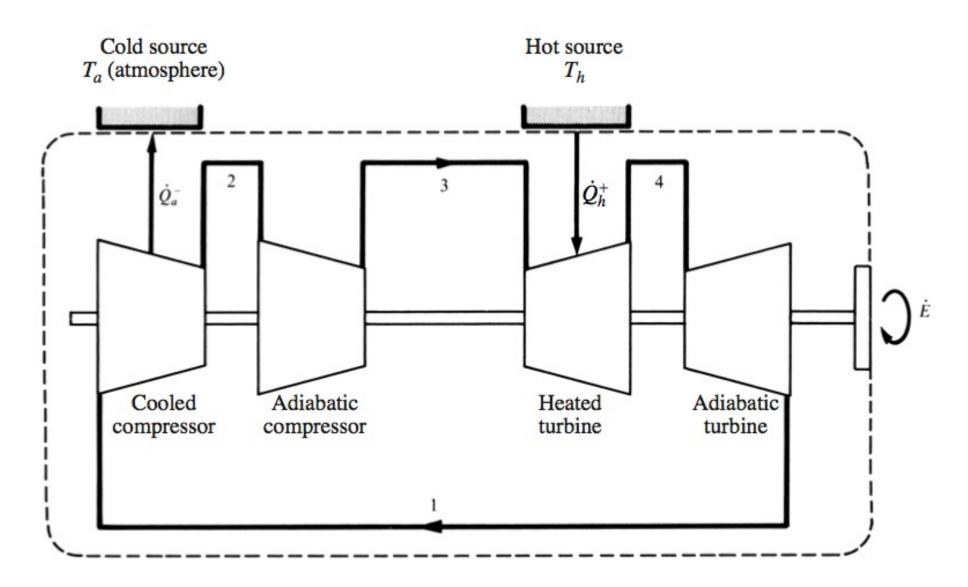
2-3 : isentropic compression: $E^+ > 0$

3-4 : isothermal expansion: $E^+ < 0$; $Q^+ > 0$

4-1 : isentropic expansion: $E^+ < 0$

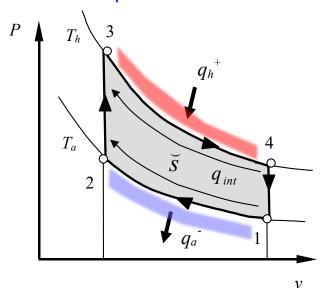
Adiabatic compression: the system receives <u>work</u> without heat loss (all heat stays inside) => no entropy increase (if dissipation (friction) is neglected, which is the case for an ideal cycle)

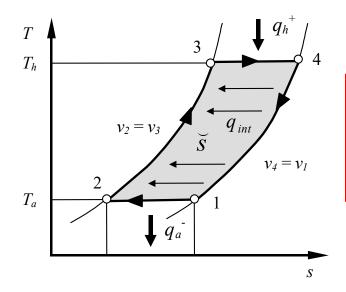
Carnot machine/engine



2. Stirling cycle

- ⇒ bi-thermal reversible power cycle
- ⇒ composed of 2 isothermal + 2 isochoric processes





$$\varepsilon^* = \eta_I^* = \Theta = 1 - \frac{T_a}{T_h}$$
$$\eta^* = 1$$

Description

1-2 : isothermal compression : $Q^+ < 0$; $E^+ > 0$

2-3: isochoric heat-addition (internal heat transfer)

3-4 : isothermal expansion: $E^+ < 0$; $Q^+ > 0$

4-1 : isochoric heat-removal (internal heat transfer)

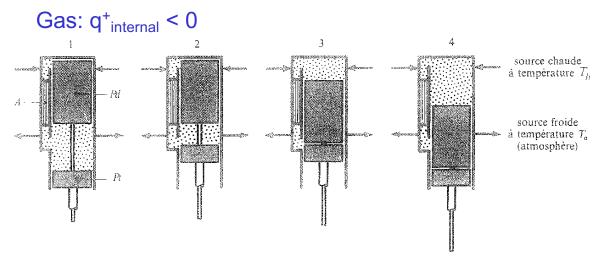
2-3: The system receives <u>heat</u> at const. volume => P, s increase

Stirling cycle

- 1-2 : isothermal compression \Rightarrow rise of the working piston Pt Gas : $e^+ > 0$ and $q^+_{cold} < 0$
- 2-3 : isochoric heat supply ⇒ descent of the displacement piston *P*d (gas receives heat from the internal heat recuperator A from bottom to top)

Gas: $q^+_{internal} > 0$

- 3-4 : isothermal expansion \Rightarrow descent of the 2 pistons Pd and Pt Gas : $e^- > 0$ and $q^+_{hot} > 0$
- 4-1 : isochoric heat removal \Rightarrow rise of the displacement piston Pd (gas gives heat to the internal heat recuperator A from top to bottom).



Pd: <u>displacement piston</u>

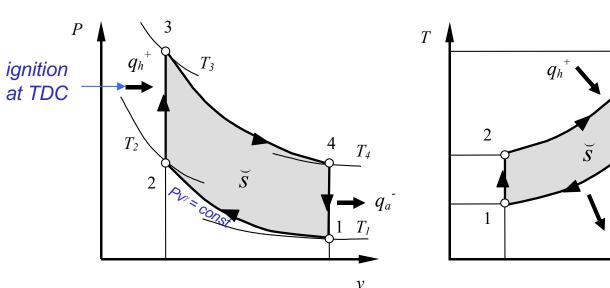
A: Regenerator

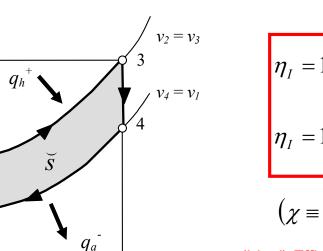
Pt: Working piston (travail)

- the one connected to the connecting rod

3. Otto cycle or constant-volume cycle (Beau de Rochas)

- ⇒ bi-thermal reversible power cycle
- ⇒ 2 isentropic + 2 isochoric processes





(Ideal) Efficiency only depends on the compression ratio! (and gamma-value)

cf. exercice 1

Description 1-2: isentropic compression

(hence adiabatic and reversible): $E^+ > 0$

2-3 : isochoric heat supply: $Q^+ > 0$ (spark at TDC+combustion (instantaneous))

3-4 : isentropic expansion: $E^+ < 0$ ($E^- > 0$: work generated)

4-1 : isochoric heat-removal: $Q^+ < 0$ (=>exhaust) =open outlet valves at BDC $T \downarrow P \downarrow$

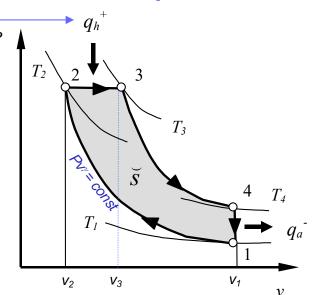
2-3: The system receives <u>heat</u> at const. volume => P, s increase

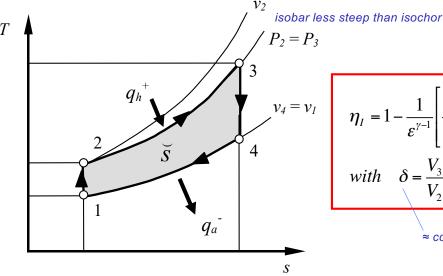
Residual combustion gases are always trapped in the clearance volume for the next cycle. As this is not air, this reduces volumetric efficiency (fresh air intake).

4. Diesel cycle or constant-pressure cycle

- ⇒ bi-thermal reversible power cycle
- ⇒ 2 isentropic + 1 isobaric + 1 isochoric processes

combustion at TDC, starting the expansion, combustion at const. p takes time





≈ combustion delay

Description

Combustion takes time => this is worse for efficiency since this leaves more time for heat exchange with the environment

1-2 : isentropic compression (adiabatic and reversible): $E^+ > 0$

2-3 : isobaric heat supply (isobaric expansion) : $Q^+ > 0$

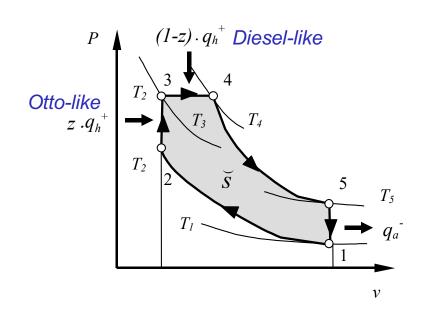
3-4 : isentropic expansion: $E^+ < 0$

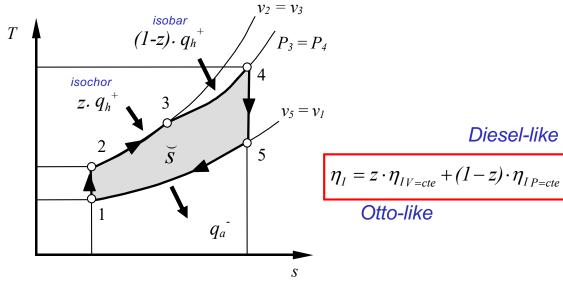
4-1: isochoric heat-removal: Q+ < 0

2-3: The system receives heat at const. pressure => v, s increase (but the s (and T) increases are less than with heat addition at const. volume)

5. Sabaté "combined" cycle

- ⇒ bi-thermal reversible power cycle
- ⇒ 2 isentropic + 2 isochoric (Otto-like) + 1 isobaric (Diesel-like) processes





Description

1-2 : isentropic compression (adiabatic and reversible): $E^+ > 0$

2-3 : isochoric heat supply (isochoric compression) : $Q^+ > 0$

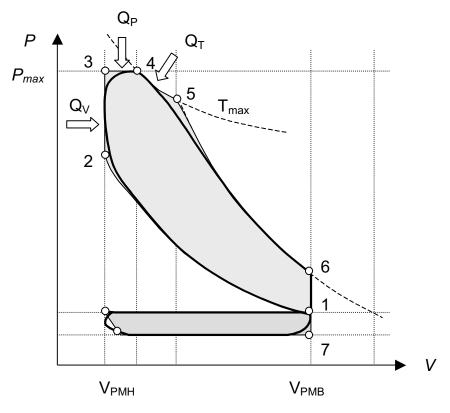
3-4 : isobaric heat supply (isobaric expansion) : $Q^+ > 0$

4-5 : isentropic expansion: $E^+ < 0$

5-1 : isochoric heat-removal: $Q^+ < 0$

6. "Wrapped" cycle

Approximation of a real cycle by an ideal « wrapped » cycle



Description:

1-2: isentropic *or* polytropic process

2-3: isochoric process

3-4: isobaric process

4-5: isothermal process

5-6: isentropic *or* polytropic process

6-1: isochoric process

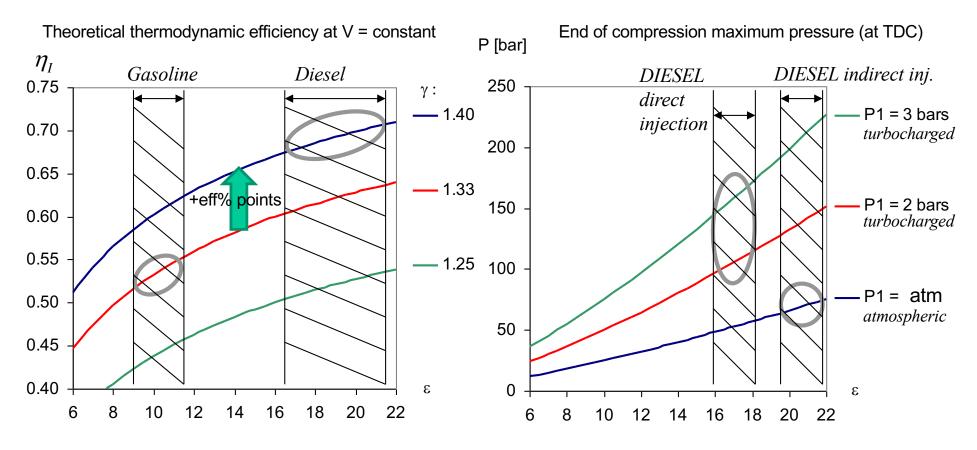
...etc

cf. ideal models of engine cycle (Chapter 7)

Efficiency of ideal cycles

• $\eta_V \Rightarrow$ Theoretical thermodynamic efficiency at V = const.:

$$\eta_I = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$$



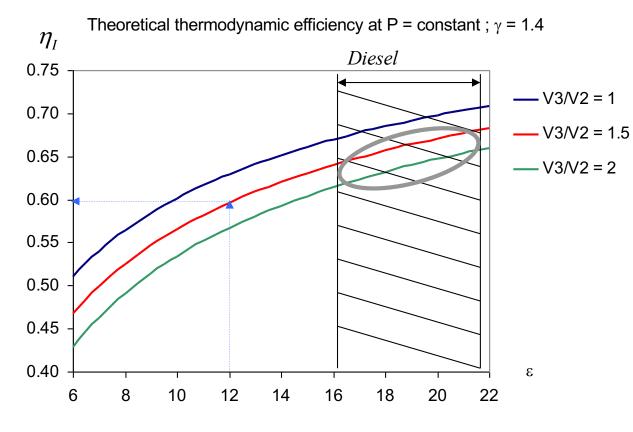
maximize ε , maximize γ

(curves w.o. combustion process)

Efficiency of ideal cycles

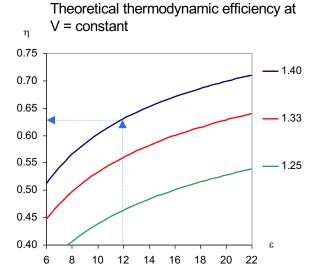
• $\eta_P \Rightarrow$ Theoretical thermodynamic efficiency at **P** = cnst. : $\eta_I = 1$

$$\eta_{I} = 1 - \frac{1}{\varepsilon^{\gamma - 1}} \left[\frac{\delta^{\gamma} - 1}{\gamma(\delta - 1)} \right]$$
with $\delta = \frac{V_{3}}{V_{2}}$



Green curve combustion process is twice as long as blue process, 7% points penalised in efficiency.

≈ combustion delay



Note that for **same** ε , Otto efficiency is **higher** than Diesel efficiency with combustion delay (δ >1)

Comparison SI / CI engines

	SI (Otto)	CI (Diesel)	
Cycle	Constant volume heat addition	Constant pressure heat addition	
Fuel	Gasoline, very volatile. High self-ignition T	Diesel, low volatility. Lower <u>self-ignition</u> T	
Fuel intake	Fuel intake Fuel-air mixture Fuel added to highly compresse high pressure pump & injector		
Load control	Throttle for fuel-air mixture quantity	Fuel quantity only, no air quantity control	
Ignition	Spark (battery or magneto)	Self-ignition (due to high P and T)	
Compression (CR)	6-10. Limited by fuel antiknock quality	16-20. Limited by engine weight (mechanical limit)	
(Engine) Speed	High (lighter weight; homogeneous combustion)	Low (heavier weight; heterogeneous combustion)	
Thermal efficiency	Lower (due to low CR)	Higher (due to high CR)	
Weight	Lighter (lower peak pressure)	Heavier (higher peak pressure)	

Despite higher P and T, the cooling upon expansion is more important for a C.I. exhaust than for a S.I. exhaust, because of the higher compression ratio :

		Gasoline	Diesel			
γ	gamma	1,35	1,4			
Γ	GAMMA	0,259	0,286			
3	epsilon (C.R.)	10	16			
	v1/v2	10	16			
	P1 - in	1	1	bar		
	P2	22,4	48,5	isentropic relation Pv^gamma = constant		
	T_adiab	2000	2200			
	T_exhaust K	1101	996	isentropic relation $P^GAMMA/T_s = constant$		
	T_exhaust °C	828	723			

Content Chapter 2

Thermodynamic basics

- *P-v* and *T-s* diagrams
- Thermodynamic cycles

Ideal cycles

- 1. Carnot cycle
- 2. Stirling cycle
- 3. Otto cycle
- 4. Diesel cycle
- 5. Combined cycle
- 6. Wrapped cycle
- 7. Efficiency of ideal cycles

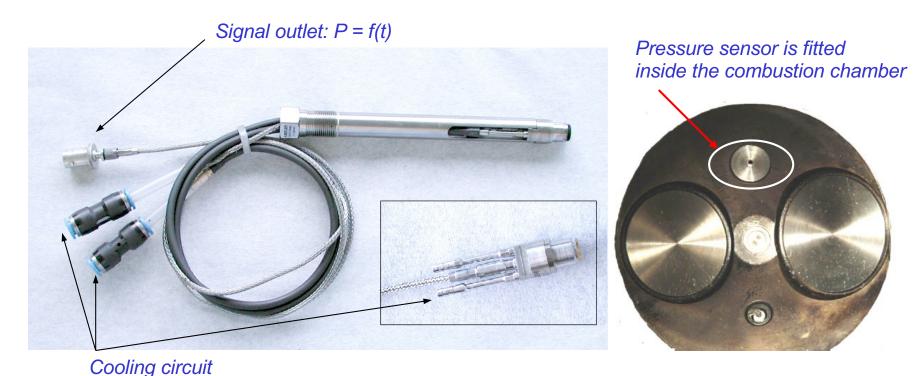
Real cycles

- Measurement method of a thermodynamic cycle on an engine
- Difference between real cycle ⇔ ideal cycle

Real cycles

- - Instrumentation (1): *pressure*

 $P_{\text{cylinder}} \Rightarrow$ cooled pressure sensor located inside the combustion chamber

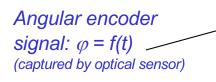


Once P, v determined (2 state functions) => everything fixed

Real cycles

- Measurement method of the thermodynamic cycle on an engine
 - Instrumentation (2): volume

 $\varphi_{\text{crankshaft}} \Rightarrow \text{angular encoder fixed on the crankshaft}$ (3600 teeth/rev.= 0.1°)



Example :
$$\varphi = f(t)$$

$$\omega(rad/s) = \frac{2 \cdot \pi}{60} \cdot N(1/\min)$$

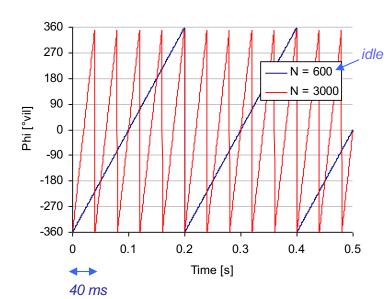
$$\varphi = \omega \cdot t$$

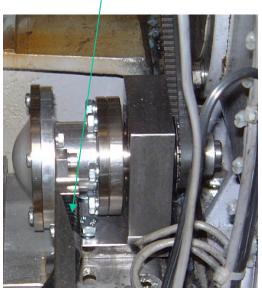
$$for N = 3000 \ rpm = 50 \ rps$$

1 rev
$$\Rightarrow$$
 20 ms (1 $\downarrow\uparrow$ stroke)

$$18^{\circ} \Rightarrow 1 \, \text{ms}$$

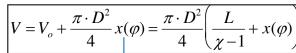
$$1^{\circ} \Rightarrow 0.056 \text{ ms}$$

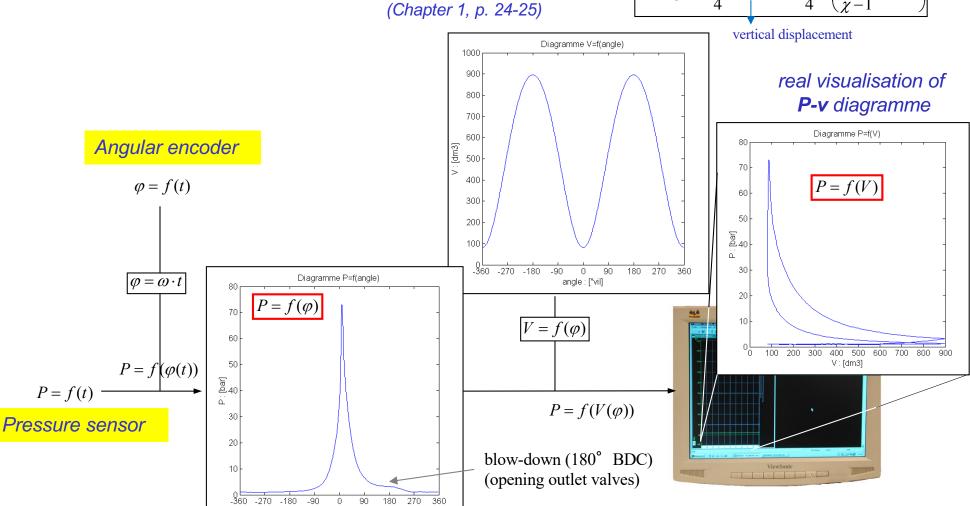




- Measurement method of the thermodynamic cycle on an engine
 - Acquisition:

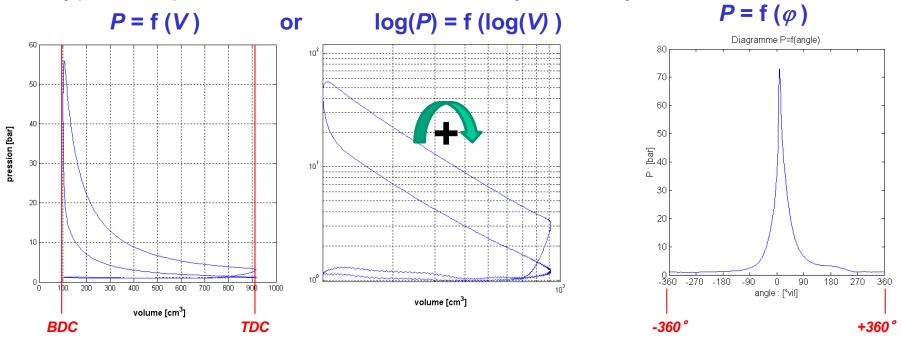
Piston motion equation:
(Chapter 1 p. 24-25)



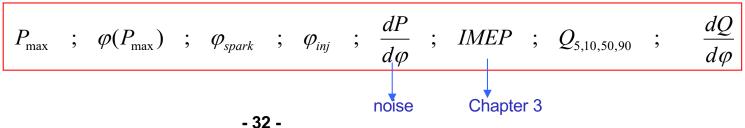


angle : [°vil]

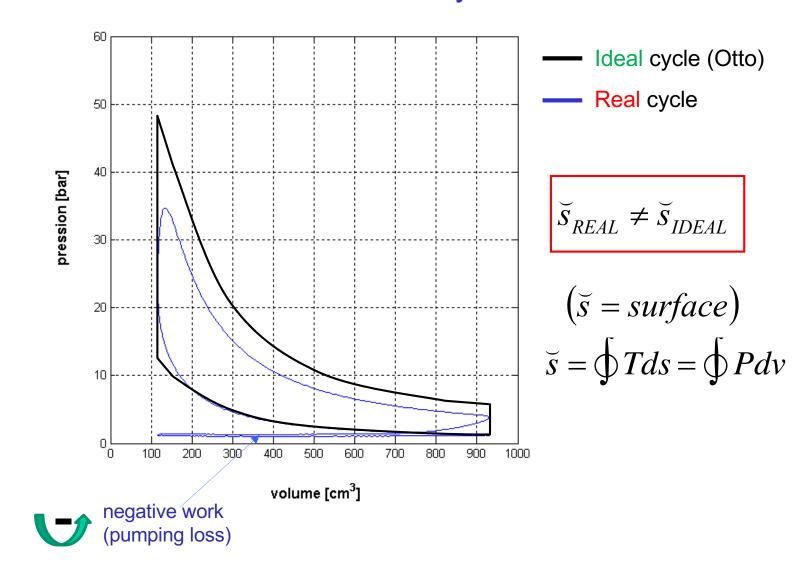
- Measurement method of the thermodynamic cycle on an engine
 - Type of representation of the thermodynamic cycle:



results/parameters resulting from the thermodynamic cycle analysis:



Difference between real and ideal cycle



Real cycles

Differences between real and ideal cycle: reasons

- gases transfer, pressure drop, pumping work ($\Delta P_{\text{Intake-Exhaust}}$)
 - ⇒ existence of a low-pressure loop
- valve train system, valve timing
 - ⇒ delayed compression (does not start exactly at BDC)
 - ⇒ blowdown expansion (does not finish exactly at BDC)
- non-instantaneous combustion process (as supposed for Otto cycle)
 - \Rightarrow heat-release rate: $Q_F = f(\varphi_{\text{crank angle}})$
- wall heat transfer losses
 - ⇒ compression and expansion are NOT perfectly adiabatic!
- increase of specific heat coefficient, molecular dissociation at high T
 - $\Rightarrow \gamma_{\sigma} \neq \text{constant } (\gamma_{\sigma} \ \)$
 - \Rightarrow endothermic reactions (CO₂, H₂O \Rightarrow CO, H₂ et O₂)

 $\eta_{
m real}$ cycle igtieq $\eta_{
m ideal}$ cycle

Ideal (closed) air cycle: assumptions

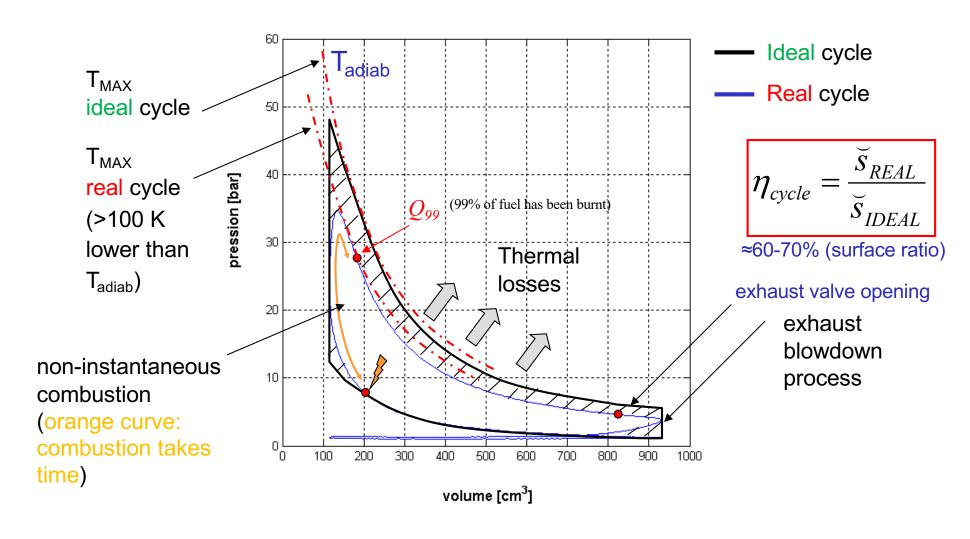
- Ideal gas pV = mRT, p = ρRT
- No mass change of the working fluid (air)
- Reversible processes
- Heat supply from constant high T hot source (not from chemical reactions)
- Heat rejected to constant low T sink
- No heat loss to surroundings (adiabatic)
- Working fluid has constant Cp, Cv

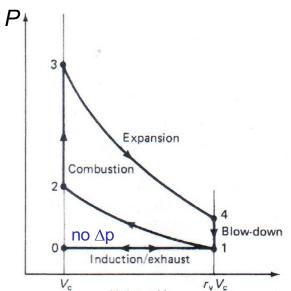
$$Cp = 1.005 \text{ kJ/kg}$$

 $Cv = 0.717 \text{ kJ/kg}$
 $M_{air} = 28.84 \text{ g/mol}$

These assumptions will strongly overestimate the cycle performance.

■ Difference between **real** and **ideal** cycle: *illustration*

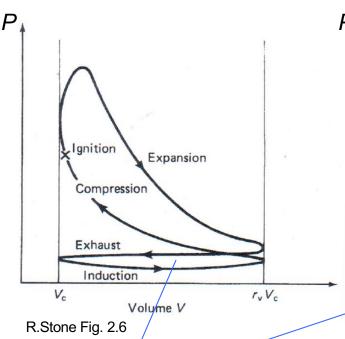




R.Stone Fig. 2.7 $r_v = \varepsilon$

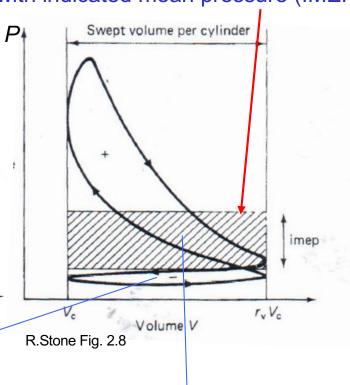
Volume V

Otto-cycle: more realistic approx. representation



negative low pressure loop

Otto-cycle: representation with indicated mean pressure (IMEP)



area equivalent to net cycle surface

Real efficiencies of air-gasoline engine as f(mixture)

